AI的快速发展对芯片的算力和能效提出了新的挑战。与传统电芯片相比,光芯片使用光子在波导中的传输特性执行运算,有望将算力和能效提升数个量级。
英国牛津大学材料学家哈里什·巴斯卡兰表示,光芯片具有更快的并行处理能力,能够提高推理任务的效率。
去年,巴斯卡兰及其同事展示了两种光芯片,并应用于处理卷积神经网络判别帕金森综合征患者的步态信息和图像分类。新型光芯片的算力不仅提升了两个数量级,且能大幅降低系统能耗。
中国清华大学科研团队也于去年推出了全球首款大规模通用智能光计算芯片——太极。它处理某些任务时的计算效率为最先进的英伟达图形处理单元的100倍,有望为大模型训练推理、通用AI、自主智能无人系统提供算力支撑。